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Abstract 
There are numerous ontology visualization systems, however, the choice of a visualiza-

tion system is non-trivial, as there is no method for evaluation and comparing them, except 
for empirical experiments, that are subjective and costly. In this research, we aim to develop 
non- empirical metrics for ontology visualizations evaluation and comparing. First, we pro-
pose several half-formal metrics that require expert evaluation. These metrics are com-
pleteness, semanticity, and conservativeness. We apply the proposed metrics to evaluate 
and compare VOWL, Graphol and Logic Graphs visualization systems. And second, we de-
velop a completely computable measure for the complexity of ontology visualizations, based 
on graph theory and information theory. In particular, ontology visualizations are consid-
ered as hypergraphs and the information measure is derived from the Hartley function. The 
usage of the proposed information measure is exemplified by the evaluation of visualiza-
tions of the sample of axioms from the DoCO ontology in Logic Graphs and Graphol. These 
results can be practically applied for choosing ontology visualization systems in general and 
regarding a particular ontology. The application for ontology visualization evaluation and 
comparing based on the formal metrics is provided. 

  
Keywords: Ontology Visualization, Expert Evaluation, Hypergraphs, Information 

Measure. 

 

1. Introduction 
Visualization of an ontology improves comprehension of knowledge it contains. There are 
numerous ontology visualization systems, the reviews are presented in [1–3]. However, the 
choice of a visualization system is non-trivial, as there is no method for evaluation and 
comparing of ontology visualization systems present in the literature, except for empirical 
experiments, that are subjective and costly. 
Therefore, we aim to develop formal metrics for ontology visualizations estimation. ’Formal’ 
means that they must be objective and computable. Some metrics we propose require ex-
ternal knowledge of the language being visualized, its semantics, and knowledge of other 
visualization systems, therefore, they are half-formal and require expert evaluation. 
Another criterion we propose is based on graph theory and information theory and is fully 
computable. The intended information measure should estimate not the content of the on-
tology, as it is the same for each visualization, but the complexity of its form. It implies the 
following requirements for the intended information measure: 

 as it should estimate the complexity of an ontology visualization, it should depend on 
the complexity of its structure, in other words, on the number of nodes, edges, and 
types of edges; 
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 it should be normalized, as visualizations of the same ontology in different visualization 
systems can have a different number of nodes and edges; 

 as it should measure the visualization complexity, a visualization with a greater number 
of nodes, edges, or edges types should have a higher value of the measure. 

The outline of the paper is as follows: in the next section we consider related works, in Sec-
tion 3 we propose several metrics for expert evaluation, in Section 4 we derive the infor-
mation measure for ontology visualizations complexity, and finally Section 5 contains the 
description of the developed application for ontology visualization evaluation and compar-
ing.  

2. Related works 
A rather small number of works are devoted to the assessment of ontology visualization sys-
tems in general.However, as ontology visualization results in a graph, works on graph visu-
alization are also relevant. In [4] the authors propose some recommendations considering 
graph diagrams, like minimization of crossings between edges. The authors of [5] present 
empirical research on applying these criteria to automatic graph layout algorithms. In [6] 
several new shape-based metrics are proposed for large graphs. All these metrics are based 
on empirical experiments, i.e. on human assessments. 
In [7] a metric for graphs with known clustering is described. The authors propose to cluster 
the nodes in the graph image and to use an existing measure of similarity to compare this 
clustering and the ground truth one. Unfortunately, ground truth is often not known in the 
case of ontologies. 

𝐼(𝐺, 𝛼) =  |𝑋| log|𝑋| −  ∑|𝑋𝑖| log(|𝑋𝑖|)

𝑘

𝑖=1

, (1) 

where 𝐺 is a graph, 𝑋 represents a graph invariant and α is an equivalence relation which 
partitions 𝑋 into k subsets 𝑋𝑖. 
The authors of [9] perform information-theoretic analysis of edge bundling visualizations in 
terms of adjacency matrices and mutual information. The main idea is that the mutual in-
formation between the visual description 𝑂 and the raw data 𝑈 should be maximized 

𝐼(𝑈, 𝑂) = 𝐻(𝑈) − 𝐻(𝑈|𝑂), (2) 
where 𝐻(𝑈) is the entropy of 𝑈 and 𝐻(𝑈|𝑂) is the conditional entropy of 𝑈 given 𝑂. 
But none of the measures presented there satisfy our requirement. Therefore, we develop a 
new graph information measure. 

3. Expert evaluation  
First, we propose to consider several features of visualization systems that, though related 
to the formal properties, like completeness, still require expert evaluation, as they involve 
external knowledge.  

3.1. Completeness 

The most important property of a visualization system is its completeness with respect to 
the language being visualized, because if a visualization system can not represent some axi-
oms of an ontology, the system can not be applied to the ontology. In addition, a common 
reference language serves as a common denominator for comparing different visualization 
systems. 
Ontologies are denoted on the OWL language [10]. The OWL 1 standard provided three in-
creasingly expressive sub-languages: OWL Lite, OWL DL, and OWL Full. In this paper, we 
consider OWL DL language, as it provides the maximum expressiveness, retaining decida-
bility. 
The formal foundation of OWL is description logics (DLs) [11]. DLs are a family of logic lan-
guages, that can be used to represent the terminological knowledge of an application do-
main. We consider axioms, formulated with the SHOIN description logic syntax, as it corre-



sponds to OWL DL language. We evaluate completeness of a visualization system by count-
ing the number of SHOIN syntax entities that the system can represent. 

3.2. Semanticity 

We suppose, the advantage of a visualization with respect to a reference language is that it 
improves comprehension of a formula with representing its semantic. Therefore, we pro-
pose to evaluate the ability of a visualization system to represent semantics of expressions. 
We consider a diagram of a visualization system for a logical relation as semantical, if it rep-
resents the semantic of the relation. For example, compare the visualization of conjunction 
from Graphol [12], Fig. 1, with the corresponding Venn diagram [13], Fig. 2. Venn diagram 
represents that these two sets have common elements, while in Graphol conjunction is just 
labeled with a hexagon. 
 

  
Fig.1. Conjunction in Graphol Fig.2. Conjunction in Venn diagrams 

3.3. Conservativeness 

Finally, we suppose that it is important to use existing graphic primitives from mathemati-
cal theories, as in the other case, i.e. introducing new graphic primitives, instead of helping 
a user to understand an ontology it forces him or her to learn just one more language. Con-
sidering again the example above, in Graphol a user has to learn that hexagon denotes con-
junction, while if the Venn diagram was used, the user familiar with Venn diagrams would 
have understood the diagram without additional instructions. Therefore, we consider a 
graphic primitive to be conservative if an expert can name an already existing formal sys-
tem, where it is adopted from. 

3.4. Example of evaluation 
We provide an evaluation of the VOWL [14], Graphol, and Logic Graphs (LGs) [15] visuali-
zation system as examples. We examined its completeness with respect to OWL DL lan-
guage, its semanticity, the ability to represent the semantics of relations, and whether its 
graphic primitives are new or adopted from some common visualization systems. See Table 
1, Table 2 and Table 3 respectively. 
We see that VOWL can represent only 12 of 15 entities of the SHOIN description logic, 
therefore, its completeness rate is 0.8. The diagrams for concepts, conjunction, disjunction, 
and equivalence are semantical and conservative, as they are based on the Venn diagrams. 
The diagram for roles can be considered as graph-theory based, therefore, it is also semanti-
cal and conservative. The diagram for negation is conservative, as it uses the sign of nega-
tion from logic, but it is not semantical, since it doesn’t represent the semantic of negation, 
i.e. a user wouldn’t have distinguished negation from another concept if there wasn’t the la-
bel of negation on it. 
Considering Graphol, it is complete, but there are only arbitrary graphic primitives that 
would have been indistinguishable if there were no labels. Speaking of labels, Graphol 
mainly uses natural language names for operations that are understandable for new users 
and, therefore, conservative. 
LGs, the semantically oriented ontology visualization method, developed by us, is complete, 
mostly semantical and conservative, since it is based on Venn diagrams, graph theory, and 



Ch. S. Peirce's existential graphs [16]. We use non-semantical primitives for number re-
strictions and functional roles as their semantical representations are inconvenient, and 
non-semantical and non-conservative primitive for concept inclusion due to the strong tra-
dition in ontology visualization. 
The resulting scores of the considered visualization systems are presented in Table 4. 

4. Information measuring 
In the previous section, we proposed several metrics for expert-based evaluation. Properties 
like completeness and conservativeness are important for visualization systems evaluation, 
but it ishard to imagine that they would be fully computable. Thus, we propose one more 
approach to ontology visualization systems evaluation intended to be completely formal. 
This approach is based on information measuring.  

4.1. Hypergraphs as the formal framework  

Before defining the information measure, we have to define the formal framework. We pro-
pose to consider ontology visualization as a hypergraph. Simple graphs are not suitable for 
our goals as many ontology visualization systems use edges connecting more than two 
nodes. A hypergraph can be represented as an incidence matrix, therefore, an ontology vis-
ualization can be 
Table 1. Expert-based evaluation of VOWL 

N Entity Complete Semantical Conservative 

1 Concept 
 

1 1 

2 Role 
 

1 1 

3 Negation 
 

0 1 

4 Conjunction 
 

1 1 

5 Disjunction 
 

1 1 

6 Existential restriction  0 0 
7 Universal restriction  0 0 

8 Transitive role 
 

0 0 

9 Inverse role 
 

0 0 

10 Role hierarchy 
 

0 0 

11 Number restriction 
 

0 0 

12 Nominal  0 0 

13 Functional role 
 

0 0 

14 Concept inclusion 
 

0 0 

15 Concept equivalence 
 

1 1 

  0.8 0.33 0.4 
 
 
 



Table 2.Expert-based evaluation of Graphol 
N Entity Complete Semantical Conservative 

1 Concept 
 

1 1 

2 Role 
 

1 1 

3 Negation 
 

0 1 

4 Conjunction 
 

0 1 

5 Disjunction 
 

0 1 

6 Existential restriction 
 

0 1 

7 Universal restriction 
 

0 1 

8 Transitive role 
 

0 0 

9 Inverse role 
 

0 0 

10 Role hierarchy 
 

0 0 

11 Number restriction 
 

0 1 

12 Nominal 
 

0 1 

13 Functional role 
 

0 0 

14 Concept inclusion 
 

0 0 

15 Concept equivalence 
 

0 0 

  1 0.07 0.6 
 
Table 3. Expert-based evaluation of LGs 
N Entity Complete Semantical Conservative 

1 Concept 
 

1 1 

2 Role 
 

1 1 

3 Negation 
 

1 1 

4 Conjunction 
 

1 1 

5 Disjunction 
 

1 1 

6 Existential restriction 
 

1 1 

7 Universal restriction 
 

1 1 

8 Transitive role 

 

1 1 



9 Inverse role 
 

1 1 

10 Role hierarchy 

 

1 1 

11 Number restriction 
 

0 1 

12 Nominal 
 

1 1 

13 Functional role 
 

0 1 

14 Concept inclusion 
 

0 0 

15 Concept equivalence 
 

1 1 

  1 0.8 0.93 
 
Table 4. Expert-based comparing of VOWL and LG 

 Complete Semantical Conservative 
VOWL 0.8 0.33 0.4 

Graphol 1 0.07 0.6 
LGs 1 0.8 0.93 

 
represented as an incidence matrix as well. 
Let there is a hypergraph H =  (X, E), where 𝑋 – is a set of nodes and E is a set of edges. It is 

represented with |𝑋|  × |𝐸| incidence matrix 𝐴 =  (𝑎𝑖𝑗), where 

𝑎𝑖𝑗  = {
1, 𝑖𝑓 𝑥𝑖 ∈  𝑒𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

for undirected graph and  

𝑎𝑖𝑗  = {

−1, 𝑖𝑓 (𝑥𝑖 , 𝑥′) ∈  𝑒𝑗

1, 𝑖𝑓 (𝑥′, 𝑥𝑖 ) ∈  𝑒𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

and  
𝑎𝑖𝑗  = 2  𝑖𝑓𝑒𝑗 =  (𝑥′, 𝑥𝑖 ) (5) 

Consider the following axiom from the Document Components Ontology (DoCO) [17] as the 
example  

𝑐ℎ𝑎𝑝𝑡𝑒𝑟 ⊑  ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ ⊔ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (6) 
and its visualization in the Graphol system, see Fig. 3. Here edges denoting 

 

 
Fig. 3. Visualization of the axiom 1 in Graphol 

 
disjunction connect three nodes: ’graphol.paragraph’, ’graphol.section’ and ’or’, therefore, it 
is the hypergraph. The incidence matrix for this hypergraph is Table 5. Each node of the di-
agram corresponds to a row of the matrix and each relation – to a column. As nodes 



’graphol.paragraph’, ’graphol.section’ and ’or’ are connected with the edge ’or’, the corre-
sponding cells have value 1. In this research, we ignore the direction of edges for simplicity. 
Table 5. The incidence matrix for the axiom 1 in Graphol 

 subClassOf graphol.contains or 
exists 1 1 0 

graphol.chapter 1 0 0 
graphol.contains 0 1 0 

graphol.paragraph 0 0 1 
graphol.sections 0 0 1 

or 0 1 1 
 
Definition 1. For a given incidence matrix A the set of all values is {a}. 
For undirected graph {a} = {0,1}, for directed {a} = {−1,0,1}, for directed graph with loops 
{a} = {−1, 0, 1, 2} and so on. 
Now we define the set of all possible edges 𝜀: 
Definition 2. For a hypergraph H with a given set of nodes X the set of all possible edges 
𝜀 =  {𝑎}𝑋. 
We are ready to define the information measure for hypergraph complexity estimation by 
deriving it from the Hartley function [18]  

log𝑏|𝐴| (7) 
where 𝐴 is an arbitrary set and b – an arbitrary number. We substitute the number of edges 
|𝐸| as |𝐴|and the number of all possible edges |𝜀| as b. 
Definition 3. For a hypergraph H with a given set of nodes 𝑋, a given set of edges 𝐸  and a 
set of corresponding incidence matrix values {𝑎}, the information 𝐼(𝐻) is following: 

𝐼(𝐻) =  log|𝜀||𝐸| =  
1

|𝑋|
log|{𝑎}||𝐸| (8) 

Consider several simple graphs for illustration, see Fig. 4, its information estimation is at 
the Table 6. As we see, 𝐻2 has a more complex structure comparing to H1 and, therefore, its 
information value is higher. 𝐻3 is directed and each directed edge contains less information, 
therefore, with the same number of edges its information value is lower compared to 𝐻1. 
Summing up, the information measure satisfies the desired properties. 
 
Table 6. Information estimation of the graph examples 

𝐻 |𝑋| |𝐸| {𝑎} 𝐼(𝐻) 
1 3 2 2 0.33 
2 3 3 2 0.53 
3 3 3 3 0.21 
 

 
Fig. 4. The graph examples 



4.2. Comparing visualizations with the information measure 
We provide an example of comparing ontology visualizations with the developed infor-
mation measure. Unlike expert-based evaluation, where we compared visualization systems 
itself, for information measure we have to compare visualizations of a particular ontology. 
We use the DoCO ontology as it is a real ontology, used in different applications, and it con-
tains nontrivial axioms. We visualized some axioms of this ontology in Graphol and Logic 
Graphs. The list of axioms and their visualizations are in Table 7. 
The example of an incidence matrix for Graphol was provided in Table 5. Now consider the 
example of the incidence matrix for Logic Graphs. The incidence matrix for the axiom 1 in 
Logic graphs is Table 8. 
We compare LGs with Graphol by measuring information of the correspond- ing visualiza-
tions for the sample of axioms, presented in Table 7. We selected the axioms according to 
the following criteria: 

 the axioms must have non-trivial form, i.e. contain more than one operation; 

 each axiom must have a unique structure, i.e. none two axioms can have the same com-
bination of operations; 

 the sample must contain all types of operations: negation, conjunction, disjunction, in-
clusion, roles with existential and universal restrictions. 

The result is in Table 9. As we see, the average information of LGs on this sample is higher, 
than of Graphol. 
 
Table 7. Visualizations of DoCO in LGs and Graphol 

1 𝑐ℎ𝑎𝑝𝑡𝑒𝑟 ⊑  ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ ⊔ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

 
  

2 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 ⊑ (𝑐ℎ𝑎𝑝𝑡𝑒𝑟 ⊔ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)  ⊓ (∃𝑖𝑠𝑝𝑎𝑟𝑡𝑜𝑓. 𝑏𝑜𝑑𝑦𝑚𝑎𝑡𝑡𝑒𝑟 ⊔ 𝑓𝑟𝑜𝑛𝑡𝑚𝑎𝑡𝑡𝑒𝑟 

 
  

3 𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑑 ⊑  𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ⊓ ∃𝑖𝑠𝑝𝑎𝑟𝑡𝑜𝑓. 𝑏𝑎𝑐𝑘𝑚𝑎𝑡𝑡𝑒𝑟 

 

 

 
 

 

4 𝑎𝑝𝑝𝑒𝑛𝑑𝑖𝑥 ⊑ (𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ⊓ ℎ𝑒𝑎𝑑𝑒𝑑𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ) ⊓ ∃𝑖𝑠𝑝𝑎𝑟𝑡𝑜𝑓. 𝑏𝑎𝑐𝑘𝑚𝑎𝑡𝑡𝑒𝑟 

 
  

5 𝑏𝑎𝑐𝑘𝑚𝑎𝑡𝑡𝑒𝑟 ⊑ 𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑠𝑒𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ⊓ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 

 

 

 
 

 

 

6 𝑐ℎ𝑎𝑝𝑡𝑒𝑟𝑙𝑎𝑏𝑒𝑙 ⊑  ¬𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑎𝑏𝑒𝑙 

 

 

 
 

 

 
 

7 𝑐ℎ𝑎𝑝𝑡𝑒𝑟𝑠𝑢𝑏𝑡𝑖𝑡𝑙𝑒 ⊑  ∃𝑖𝑠𝑝𝑎𝑟𝑡𝑜𝑓. 𝑐ℎ𝑎𝑝𝑡𝑒𝑟 

 

 

 
 

 



8 𝑓𝑖𝑔𝑢𝑟𝑒 ⊑  𝑚𝑎𝑡𝑎 ⊔ 𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 

 
  

9 𝑔𝑙𝑜𝑠𝑠𝑎𝑟𝑦 ⊑  𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ⊓ (∃𝑖𝑠𝑝𝑎𝑟𝑡𝑜𝑓. 𝑏𝑎𝑐𝑘𝑚𝑎𝑡𝑡𝑒𝑟 ⊔ 𝑓𝑟𝑜𝑛𝑡𝑚𝑎𝑡𝑡𝑒𝑟) 

 

 

 
 

 

 
10 𝑙𝑖𝑠𝑡 ⊑  ∀𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝑏𝑙𝑜𝑐𝑘 ⊔ 𝑓𝑖𝑒𝑙𝑑 ⊔ (𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ⊓ (¬(ℎ𝑒𝑎𝑑𝑒𝑑𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 ⊔ 𝑡𝑎𝑏𝑙𝑒))) 

 

 

 
  

 
Table 8. The incidence matrix for axiom 1 in LGs 

 subClassOf contains negation 1 negation 2 conjunction negation 3 
chapter 1 0 0 0 0 0 

conjunction 0 1 0 0 1 1 
domain 1 1 0 0 0 0 

paragraph 0 0 1 0 1 0 
section 0 0 0 1 1 0 

 
Table 9. Comparing information of ontology visualizations 

N LG Graphol 
 |𝑋| |𝐸| {𝑎} 𝐼(𝐻) |𝑋| |𝐸| {𝑎} 𝐼(𝐻) 
1 5 6 2 0.52 6 3 2 0.26 
2 9 11 2 0.38 10 5 2 0.23 
3 5 3 2 0.32 6 3 2 0.26 
4 7 4 2 0.29 8 4 2 0.25 
5 4 2 2 0.25 4 2 2 0.25 
6 2 2 2 0.5 3 2 2 0.33 
7 3 2 2 0.33 4 2 2 0.25 
8 4 5 2 0.58 4 2 2 0.25 
9 7 7 2 0.4 8 4 2 0.25 
10 10 11 2 0.35 12 6 2 0.22 

    0.39    0.26 

5. Realization 
As a part of this research, an application has been implemented. It includes a basic ontology 
visualization tool, a library of formal ontology visualization metrics, and an algorithm for 
constructing the best visualization according to the selected metrics. 
The application is implemented with JavaFX, for graph representation Graph- stream li-
brary [19] is used and ontologies are imported with the help of OWL API [20]. Several deci-
sions have been made in the course of development to improve the readability of ontologies. 
Firstly, in order to reduce visual clutter, labels of edges are shown only when they hover. 
Secondly, there is an option on the conversion step to remove nodes with a degree less than 
the specified threshold. A similar option exists in WebVOWL [21], the rationale behind it is 
that the most important concepts in an ontology often correspond to nodes with the largest 
degrees. Screenshots of the application are shown in Fig. 5. 
 



 
Fig. 5. Application menu 

 
The workflow of the application consists of two steps: 1) conversion of an ontology to a 
graph and 2) constructing the layout for the graph. For both steps, users could either set an 
algorithm explicitly or let the program choose it automatically based on a selected quality 
metric. The resulting graph also could be exported to DOT. Data flow in the application is 
summarized in Fig. 6. 
 

 

Fig. 6. Data flow in the application 



The application includes the library of visualization metrics. For the conversion step, the 
library includes a special case of the proposed formal metric (8) with |{𝑎}| = 2. Along with it, 
there is the graph entropy metric (1) with X being the set of nodes. Two nodes are consid-
ered equivalent if they have the same degree. For the layout step, the aesthetic metrics from 
the field of graph drawing are used, including the number of edge crossings and similarity 
with shape graph, namely, k-nearest neighbors graph [6]. 
If a user sets a visualization metric instead of explicit visualization parameters, the applica-
tion searches for the best visualization algorithm automatically, based on the selected met-
ric. First, the metric is evaluated on the result of each algorithm. Then the algorithm with 
the best value (the highest or the lowest, depending on the meaning of the metric) of the 
metric is chosen. Since force-directed algorithms use randomization, they are run multiple 
times, and the mean value of the metric for all runs is used. 
The application provides two ways to evaluate and compare the visualizations produced by 
other ontology visualization tools. The first way is to simulate the results with the proper 
algorithms in the application. At the moment, conversion algorithms from visualization 
tools Ontograf [22] and OWLViz [23] are supported. The second way is to import the result. 
Some visualization tools, e.g. WebVOWL, support export to DOT, so the application sup-
ports import from this format. As per layout, several force-directed algorithms are support-
ed. 
As an example, the visualization of the FOAF ontology [24] in the application is provided at 
Fig. 7. 
 

 
 

Fig. 7. Visualization of the FOAF ontology in the application 



6. Conclusion  
In this research, we proposed several non-empirical metrics for ontology visualization eval-
uation and comparing. These metrics are divided into two groups. The first group includes 
three metrics: completeness, semanticity, and conservativeness. These metrics require ex-
pert evaluation and, therefore, they are half-formal. As an example, we compared ontology 
visualization systems: VOWL Graphol and Logic Graphs.  
The second group consists of the completely computable information measure, derived 
from the Hartley formula, that allows normalized measuring complexity of ontology visuali-
zations, represented as hypergraphs with incidence matrices. As an example, we compared 
Logic Graphs with Graphol by measuring average information of visualizations of the sam-
ple of axioms from the DoCO ontology. 
These results can be practically applied for choosing ontology visualization systems in gen-
eral and regarding a particular ontology. Considering the presented examples, it is recom-
mended to use LGs rather than VOWL in general, as it has higher scores of completeness, 
semanticity, and conservativeness, and for visualizing the mentioned fragment of the DoCO, 
as LGs has higher informativeness.  
As the implementation of the results, the application for ontology visualization evaluation 
and comparing has been developed. It includes the basic ontology visualization tool, the li-
brary of formal ontology visualization metrics, and the algorithm for constructing the opti-
mal visualization according to the selected metrics. The application supports simulation of 
several ontology visualization tools and import and export to DOT format.  
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